Thermalization in Scalar Field Theories

Philip Plaschke

Based on "Turbulent Thermalization" (R. Micha, I. Tkachev) arXiv:hep-ph/0403101

5. Juni 2020

- Introduction
- Massless $\lambda\Phi^4$ -Model
- Thermalization in Wave Kinetic Regime
- Stationary States and Self-Similar Evolution in Concrete Models
- Two Interacting Fields
- Applicability of Kinetic Approach
- Physical Application
- Conclusion and Open Questions

- Introduction
- Massless $\lambda\Phi^4$ -Model
- Thermalization in Wave Kinetic Regime
- Stationary States and Self-Similar Evolution in Concrete Models
- Two Interacting Fields
- Applicability of Kinetic Approach
- Physical Application
- Conclusion and Open Questions

Introduction

Connection to Inflation

- Equilibration of far-from-equilibrium systems finds many practical applications (heavy ion collisions or cosmology of the early Universe)
- At the end of inflation: energy stored in a Bose condensate
 → corresponding field: inflaton
- Highly unstable state: inflaton decays rapidly and explosively
- Inflaton decay stops when rate of interactions of created fluctuations (with each other and with the inflaton) is comparable to inflaton decay rate

igl[1igr]With the kind permission of Dr. Sören Schlichting

Introduction

Describing Reheating

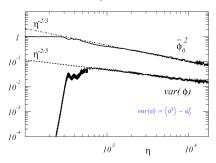
- Problems in describing reheating:
 - ▶ Very large initial occupation number
 - ▶ In many models: zero mode does not decay completely
- Therefore: simple perturbative approach is not valid
- But classical field theory is valid \rightarrow study via classical lattice simulations

- Introduction
- Massless $\lambda\Phi^4$ -Model
- Thermalization in Wave Kinetic Regime
- Stationary States and Self-Similar Evolution in Concrete Models
- Two Interacting Fields
- Applicability of Kinetic Approach
- Physical Application
- Conclusion and Open Questions

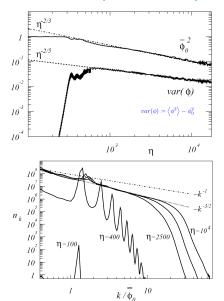
Set-Up

- Only one dynamical variable (Φ) , whose initial homogeneous mode drives inflation
- End of inflation: when motion of homogeneous component changes from "slow-roll" to regime of oscillations
- Equation of motion after inflation in conformal coordinates $(ds^2 = a(\eta)^2 (d\eta^2 d\mathbf{x}^2))$: $\Box \phi + \phi^3 = 0$
- ullet ϕ obtained from initial field by rescaling

Results for variance and amplitude and

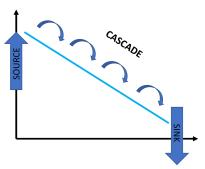


Results for variance and amplitude and occupation number



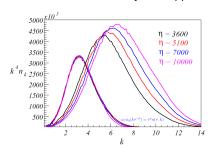
Turbulence

- Turbulence first discussed for fluids; appears also in systems of coupled waves (wave turbulence)
- Classification of turbulence:
 - Driven (stationary) turbulence: existence of active source of energy in momentum space
 - Free (or decaying) turbulence: freely propagating energy cascade after switch-off of active stage



Regime of $\eta > 1500$

- Statistically close to a Gaussian distribution of field amplitudes and conjugated momenta
- In dynamically important region: $n_k \sim k^{-s}$ with $s=\frac{3}{2}$ ($\sim k^{-1}$ corresponds to thermal equilibrium)
- Cut-off at higher k; position moves towards the ultra-violet
- Motion describable as self-similar evolution: $n(k,\tau)=\tau^{-q}n_0(k\tau^{-p})$ with $\tau\coloneqq\eta/\eta_c$
 - ▶ Best numerical fit: $q \approx 3.5 p$, $p \approx 1/5$
 - \triangleright p determines rate with which the system approaches equilibrium



Kinetic Theory or Lattice Simulation?

- At early times kinetic theory not applicable
 - ► Zero mode does not decay completely
 - ▶ Initially occupation numbers are of order $n_k \sim 1/\lambda$
- \bullet Lattice calculations limited in momenta and time range \to apply kinetic theory at late time
- Compute universal scaling exponents within (weak) wave kinetic theory and compare with lattice computation
- At early times: dynamics driven by m-particle scattering with m=3
- Wave kinetic turbulence gives in d=3:

$$p = \frac{1}{2m-1} = \frac{1}{5}$$
 , $s = d - \frac{m}{m-1} = \frac{3}{2}$

Differences to More Complicated Models

- Expect turbulent stage and applicability of turbulence theory
- in $\lambda \phi^4$ model:
 - Preheating (parametric resonance) ends when half of inflaton energy is transferred
 - ▶ Inflaton energy decreases right after end of resonance stage
 - ► Followed by turbulent regime
- In models with #fields > 1:
 - ► Turbulence should start at different time
 - Regime of free turbulence appears

- Introduction
- Massless $\lambda \Phi^4$ -Model
- Thermalization in Wave Kinetic Regime
- Stationary States and Self-Similar Evolution in Concrete Models
- Two Interacting Fields
- Applicability of Kinetic Approach
- Physical Application
- Conclusion and Open Questions

Turbulent Reheating

- Consider systems with spatially isotropic and homogeneous correlation functions (corresponds to cosmological conditions after inflation)
- Set-up: source of energy (or particles) at region k_{in} ; sink at region k_{out}
- If source and sink are stationary: (eventual) development of stationary state with scale independent transport of conserved quantities
- Common features of reheating and turbulence:
 - Existence of localized source of energy at $k_{\rm in} \sim k_{\rm res}$ (oscillating inflaton zero-mode)
 - ▶ No other scale where energy is infused, accumulated or dissipated

Turbulent Reheating

- Differences between reheating and turbulence:
 - Non-existence of a sink
 - ► Source can be time-dependent
 - After complete inflaton decay: neither source nor sink exists
- However:
 - First point: driven turbulent flux of energy will be established in some "inertial" range $k_{\rm in} < k < k_{\rm out}$; flux of energy is constant throughout inertial range, i.e. $E(t) \sim t$
 - Second point: time dependent source changes picture dramatically; weak time dependence can be handled and allows "close-to-stationary" and "close-to-turbulent" evolution
 - ➤ Third point: particle distribution in inertial range still close to turbulent power laws; collision integral should approach a minimum; results in same shape for particle distribution

Wave Turbulence by Scaling Analysis

 Dynamics of coupled waves close to a stationary state described by wave kinetic equation:

$$\dot{n}_k = I_k[n]$$
 where $I_k[n] = \int \mathrm{d}\Omega(k,q_i) F(k,q_i)$

- In classical limit: $F(\zeta n) = \zeta^{m-1} F(n)$ (for interaction of m particles)
- Consider here only energy and particle density as conserved quantities (there could be more)
- Stationary turbulence: energy flux, $S^{\rho}(r) \sim \int^r \mathrm{d}k k^{d-1} \omega_k I_k[n]$, should be scale invariant, i.e. independent of integration limit $r \to \mathrm{find}$ conditions s.t. $S^{\rho}(r) = S^{\rho}$

Wave Turbulence by Scaling Analysis

- Consider states with $I_{\xi k}[n] = \xi^{-\nu} I_k[n]$, i.e. $I_k[n] = k^{-\nu} I_1[n]$
- Consider dispersion law is homogeneous function: $\omega(\xi k) = \xi^{\alpha}\omega(k)$
- All in all: $S^{\rho}(r) \sim -r^{d+\alpha-\nu} \frac{I_1(\nu)}{d+\alpha-\nu}$ \Rightarrow flux is scale invariant for $\nu = d+\alpha$
- ullet From now on: consider $\mathrm{d}\Omega$ is homogeneous function with exponent μ
- consider $n(q)\sim q^{-s}$, i.e. $F(\xi k,\xi q_i)=\xi^{-s(m-1)}F(k,q_i)$, i.e. $I_{\xi k}=\xi^{\mu-s(m-1)}I_k$
- This gives scaling of particle distribution in turbulent states with constant energy transport (i.e. in energy cascade):

$$s = \frac{d + \alpha + \mu}{m - 1}$$

Self-Similar Evolution

- Assume self-similar evolution for describing e.g. free turbulent
- Describe as rescaling of momenta accompanied by suitable change of the overall normalization: $n(k,\tau)=A^{\gamma}n_0(kA)$
- Wave kinetic equation gives:

$$A = \Theta^{-p} \quad , \quad \Theta \coloneqq \frac{\Gamma \bar{t}_0}{p} \int_1^\tau \mathrm{d}\tau' B(\tau') + 1 \quad , \quad p \coloneqq \frac{1}{\gamma(m-2) - \mu}$$

• p determines the speed of motion over momentum space of the distribution function \rightarrow defines e.g. time scale of thermalization

Self-Similar Evolution in Time-Independent Background

- Time-independent background: B=1
- Specify γ by boundary conditions
 - Isolated systems:

$$\mbox{rel.:} \ p_i = \frac{1}{(d+\alpha)(m-2)-\mu} \quad , \quad \mbox{non-rel.:} \ p_i = \frac{1}{d(m-2)-\mu}$$

Driven turbulence:

$$p_t = (m-1)p_i$$

Non-stationary source:

$$p = (1 + r(m-2))p_i$$
 with $E(\tau) = E_0 \tau^r$

Self-Similar Evolution in Time-Dependent Background

- Time-dependent background: $B(\tau) = \tau^{-\kappa}$
- Solution in this case: $\Theta = \Theta(\tau^{1-\kappa})$
- Late time behaviour depends on sign of $1-\kappa$
 - ▶ $1-\kappa>0$: distribution propagates to ultraviolet without bound, i.e. $A\sim \tau^{(1-\kappa)p}$
 - ▶ $1 \kappa < 0$: $A(\tau)$ approaches finite limit $A(\tau = \infty) = \left[1 + \frac{1}{\kappa 1}\right]^{-p}$, i.e. propagation of particle distribution towards ultraviolet is limited

- Introduction
- Massless $\lambda \Phi^4$ -Model
- Thermalization in Wave Kinetic Regime
- Stationary States and Self-Similar Evolution in Concrete Models
- Two Interacting Fields
- Applicability of Kinetic Approach
- Physical Application
- Conclusion and Open Questions

Stationary States and Self-Similar Evolution in Concrete Models

k-Independent Matrix Elements

- Example: $\lambda\phi^4$ -model
- Scaling exponents for energy cascade in isolated systems within this model:

$$\begin{array}{ll} {\rm rel.:} \ \ p_i = \frac{1}{(2m-1)} & , \quad {\rm non-rel.:} \ \ p_i = \frac{1}{2} \\ {\rm rel.:} \ \ s \ = d - \frac{m}{m-1} & , \quad {\rm non-rel.:} \ \ s \ = d \\ \end{array}$$

• 3-particle scattering in $\lambda \phi^4$ (appears when interaction with zero-mode is important) gives in d=3: $p_i=\frac{1}{5}$, $s=\frac{3}{2}$ \rightarrow coincides with numerical values

^[2] With the kind permission of Dr. Sören Schlichting

Stationary States and Self-Similar Evolution in Concrete Models

Relativistic Theory With Dimensionless Coupling

- Example: $\lambda \phi^4$ -model in d=3 if zero-mode is absent (late times)
- Scaling exponents for energy cascade in isolated systems within this model:

$$p_i = \frac{1}{(d+1)(m-2)-1}$$
 , $s = \frac{d+2}{m-1}$

• In d=3 for 4-particle processes: $p_i=\frac{1}{7}$, $s=\frac{5}{3}$

^[3] With the kind permission of Dr. Sören Schlichting

Stationary States and Self-Similar Evolution in Concrete Models

Explicit Time-Dependence in The Collision Integral

- Self-similar evolution modified if explicit time dependence is present
- Relativistic regime:
 - ▶ Time-dependence enters vial coupling to zero-mode
 - ▶ Leads to new specific terms in collision integral
 - $\mathbf{s}=rac{3}{2}$ still applicable as collision integral is dominated by 3-particle interaction
 - ▶ p changes because amplitude of zero-mode changes with time; during initial stage: driven turbulence, i.e. $p_t=2p_i$; at late times: $p\approx \frac{1}{5}$ during integration time with deviation of 5%

- Introduction
- Massless $\lambda \Phi^4$ -Model
- Thermalization in Wave Kinetic Regime
- Stationary States and Self-Similar Evolution in Concrete Models
- Two Interacting Fields
- Applicability of Kinetic Approach
- Physical Application
- Conclusion and Open Questions

The Model

- At end of inflation the Universe is very close to spatially flat Friedmann model
- Consider massless fields
- Conformal transformation allows mapping of dynamics in expanding Friedmann Universe into case of Minkowski space-time
- Dynamics obtained from Lagrangian density

$$\mathcal{L} = \frac{1}{2} (\partial \Phi)^2 + \frac{1}{2} (\partial X)^2 - V(\Phi, X),$$

$$\lambda_{\Phi, \mathbf{X}, \mathbf{Y}} = \lambda_{\Phi, \mathbf{X}, \mathbf{Y}, \mathbf{Y}} \lambda_{\mathbf{X}, \mathbf{Y}} \lambda_{\mathbf{X}, \mathbf{Y}} \lambda_{\mathbf{Y}, \mathbf{$$

$$V(\Phi, X) = \frac{\lambda_{\Phi}}{4} \Phi^4 + \frac{\lambda_{\Phi X}}{2} \Phi^2 X^2 + \frac{\lambda_X}{4} X^4$$

- \bullet Φ identified with the inflaton
- Equation of motion in dimensionless form after rescaling:

$$\begin{cases} \Box \phi + \phi^3 + g\chi^2 \phi = 0 \\ \Box \chi + h\chi^3 + g\phi^2 \chi = 0 \end{cases}$$

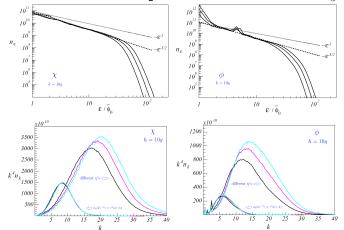
$$g \coloneqq \frac{\lambda_{\Phi X}}{\lambda_{\Phi}} \quad , \quad h \coloneqq \frac{\lambda_X}{\lambda_{\Phi}}$$

Numerical Results - Particle Spectra

- Set g=30; vary h; duration and relative importance of different regimes (parametric resonance, driven turbulence, free turbulence) influenced by different values of h
- At late times: very similar behaviour to case with one field
- ullet Same scaling exponents ($s=\frac{3}{2},$ at sufficiently late times: $p=\frac{1}{5}$)

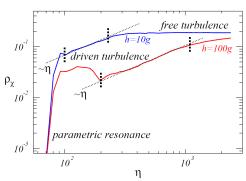
Numerical Results - Particle Spectra

- Set g=30; vary h; duration and relative importance of different regimes (parametric resonance, driven turbulence, free turbulence) influenced by different values of h
- At late times: very similar behaviour to case with one field
- Same scaling exponents $(s=\frac{3}{2})$, at sufficiently late times: $p=\frac{1}{5}$



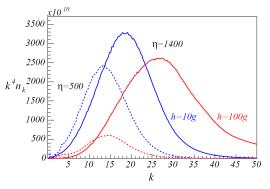
Numerical Results - Driven and Free Turbulence in Two Field Model

- Driven turbulence expected to appear when $g\gg 1,\ h\gg 1$, i.e. when parametric resonance stops early
- Use energy densities instead of particle distributions to describe dynamics



Numerical Results - Driven and Free Turbulence in Two Field Model

Thermalization proceeds faster with larger couplings



- In systems with acceptable reheating temperature, parametric resonance stops only when negligible fraction of inflaton energy has decayed
 - \Rightarrow Driven turbulence is major mechanism of energy transfer from inflaton into particles

- Introduction
- Massless $\lambda\Phi^4$ -Model
- Thermalization in Wave Kinetic Regime
- Stationary States and Self-Similar Evolution in Concrete Models
- Two Interacting Fields
- Applicability of Kinetic Approach
- Physical Application
- Conclusion and Open Questions

Applicability of Kinetic Approach

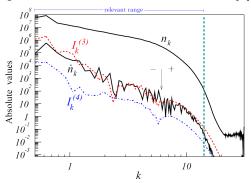
3- or 4-Particle Interaction?

- Observed exponents $s \approx \frac{3}{2}$, $p = \frac{1}{5}$ are corresponding to 3-particle interactions
- Problem: no bare 3-particle interactions in the considered systems
 - Appear effectively in interaction with zero-mode; collision integral multiplied by amplitude of zero-mode squared
 - ▶ Amplitude decays, i.e $p = \frac{1}{5}$ only valid in small interval
- 4-particle interaction responsible for observed scaling?
 - $ho_i = rac{1}{7}$ for 4-particle interaction (not that far away)
 - Expected value $s = \frac{5}{2}$ far away
 - ▶ 4-particle scattering dominates when variance of fluctuations larger than ϕ_0^2 ; not the case here
- Is weak wave turbulence theory applicable?
 - Study collision integrals (and correlators)

Applicability of Kinetic Approach

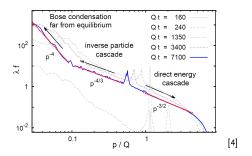
Collision Integrals

• Strategy: compute collision integrals numerically with n_k obtained from lattice calculations; calculate time derivatives of distribution function using lattice data and check relation $\dot{n}_k = I_k[n]$



Applicability of Kinetic Approach

Problems And Open Questions



- Slow decay of inflaton at late times
- Numerical calculation on larger lattice shows strong turbulence in infra-red
 - ⇒ standard perturbation theory not applicable

^[4] Berges, J. et al., Journal of High Energy Physics 2014.5 (2014), arXiv:1312.5216

- Introduction
- Massless $\lambda \Phi^4$ -Model
- Thermalization in Wave Kinetic Regime
- Stationary States and Self-Similar Evolution in Concrete Models
- Two Interacting Fields
- Applicability of Kinetic Approach
- Physical Application
- Conclusion and Open Questions

Motivation

- During preheating many effects occur, with common origin: rapid particle creation and large fluctuations
 - ▶ These are unaffected by the obtained results
- Sometimes it is necessary to trace events further in time (e.g. to find out when thermal equilibrium will be established)
- Main interest: field variances and problem of thermalization

Field Variances

- Field variances may give answer to symmetry restoration
- For negligible anomalous correlators:

$$var(\chi, \tau) := \langle \chi^2 \rangle - \langle \chi \rangle^2 = \int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{n_k}{\omega_k} = \tau^{-\gamma p_i} var_0(\chi)$$

- Relativistic regime:
 - ▶ Regime of driven turbulence: $var(\chi) = \tau^{p_i} var_0(\chi) = \tau^{\frac{1}{5}} var_0(\chi)$
 - Regime of free turbulence: $var(\chi) = \tau^{-2p_i} var_0(\chi) = \tau^{-\frac{2}{5}} var_0(\chi)$ (for late times $p_i = \frac{1}{7}$ because 4-particle scattering dominates)
- Non-relativistic regime:
 - $ightharpoonup var(\chi, au)=$ const. in case of both driven and free turbulence
- In regime of driven turbulence: variance varies slowly; energy in particles grows fast
 - In agreement with theory: variance can be large after parametric resonance stage; amount of energy transferred during this stage is low
 - Energy transfer occurs in regime of driven turbulence

Thermalization in Absence of Zero-Mode

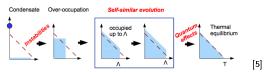
- Consider self-similar evolution; introduce specific models via factor A(au)
- Classical evolution stops when system approaches quantum regime (when occupation number becomes of order one)
- Consider here only free turbulence
- Estimate of thermalization time: $\tau^{\text{th}} \sim (k_f/k_i)^{1/p}$
- ullet Consider evolution of sub-system of excitations of a field χ
 - ightharpoonup Initially fixed part of energy deposited into it; since then χ evolves as isolated system

Thermalization in Absence of Zero-Mode

- Treat expansion of Universe in conformal coordinates
- Let c_χ : fraction of inflaton energy deposited into field χ during preheating and driven turbulence ($\rho_f = \rho_i = c_\chi \rho_{\text{tot}}$)
- Relativistic regime:
 - Thermalization time:

$$au^{
m th} \sim c_\chi^{7/4} \left[rac{M_{
m Pl}}{M_\phi}
ight] \sim c_\chi^{7/4} \lambda^{-7/4} \ {
m with} \ M_\phi = \sqrt{\lambda} M_{
m Pl}$$

 Relativistic and non-relativistic results coincide with theoretical estimates from Minkowski space-time and Friedmann Universe



^[5] With the kind permission of Dr. Sören Schlichting

Table of Contents

- Introduction
- Massless $\lambda \Phi^4$ -Model
- Thermalization in Wave Kinetic Regime
- Stationary States and Self-Similar Evolution in Concrete Models
- Two Interacting Fields
- Applicability of Kinetic Approach
- Physical Application
- Conclusion and Open Questions

Conclusion and Open Questions

- Process of thermalization of classical systems in non-equilibrium state can be divided into three stages
- Initial stage of preheating powered by parametric resonance
 - ► Energy in particles grows exponentially
 - ► Amount of energy transferred depends on coupling strength
- Parametric resonance followed by driven turbulence
 - Energy in particles grows linearly
 - Stops when energy in particles starts to dominate the overall energy balance
 - Major mechanism of energy transfer from inflaton zero-mode into particles
- Last stage classified as free turbulence
 - ▶ Energy in particles conserved during this stage
 - ▶ Particle distribution obeys self-similar evolution
 - Continues until quantum regime is reached
- Open Questions:
 - ▶ Late time decay of inflaton
 - Thermalization in quantum regime

Thank You!

Further Reading

- http://kaiden.de/data/ICTS19/SS_ICTS_L3.pdf
- S. Nazarenko; Wave turbulence
- Berges, J. et al. "Basin of Attraction for Turbulent Thermalization and the Range of Validity of Classical-Statistical Simulations.", Journal of High Energy Physics 2014.5 (2014)

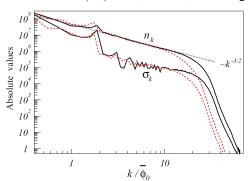
Explicit Time Dependence in The Collision Integral

- Non-relativistic regime:
 - ▶ Time-dependence enters via expanding Universe
 - ▶ Time-dependence given by $B(\tau)=[bH_0\eta_0(\tau-1)+1]^{-\kappa}$ ▶ Scaling exponent: $p=\frac{1}{3(m-2)-\mu}$

 - ightharpoonup For $au o\infty$: $k_c(au=\infty)=rac{1}{[b(\kappa-1)H_0\eta_0]^p}k_c(1)$, i.e. thermal equilibrium can only be reached for $H_0\eta_0 < 1$
 - ▶ However, $k_c(\tau = \infty)$ must not be smaller than typical momentum in equilibrium to reach thermal equilibrium

Anomalous Correlators σ_k

- Usual assumption for deriving kinetic equations: $\langle a_k a_q
 angle \ll \langle a_k^* a_q
 angle$
- Problem: assumption does not always hold
 - If coherent processes are important, correlators modify dynamics of n_k and should be included in kinetic equations
- Therefore: check condition $|\sigma_k| \ll n_k$ since σ_k were neglected



Thermalization in Absence of Zero-Mode

- Non-relativistic regime:
 - lacksquare Thermalization time: $au^{
 m th} \sim \left[c_\chi rac{M_\phi}{M_X}
 ight]^{2/3} \lambda^{-2/3}$
 - ightharpoonup X: Number of particles

Dependence on Initial Conditions



^[6] Berges, J. et al., Journal of High Energy Physics 2014.5 (2014), arXiv:1312.5216